بولیتکنك POLYTECHNIC	Abu Dhabi Polytechnic		
Students' Graduation Project Abstract			
Department:	PET	Semester:	Spring-2022
Project Title:	Removal of CO2 in the production of Demineralized Water		
Supervisor:	Dr. Mohammad Alalaween		

Abstract:

Carbon dioxide (CO2) in water is present as an equilibrium mixture of the dissolved gas CO₂, the weak acid H₂CO₃, and the HCO₃- and CO₂- anions associated with bicarbonate and carbonate alkalinity. The exact equilibrium ratio of these four species depends on the pH and temperature of the water. In a two- to fourbed ion exchange demineralization system, bicarbonate and carbonate alkalinity are converted to dissolved CO_2 as they pass through the cation exchange resin beds due to a reduction in pH. If CO_2 is not removed prior to entering the anion exchange resin beds, all CO₂ is converted to bicarbonate or carbonate anions as the pH increases, which exchange onto strong base anion resin. This study aimed to simulate CO₂ removal by installing a degasser. A CO₂ degasser is often used in the field of ion exchange in combination with demineralization plants. The CO₂ degasser is placed between the cation and anion exchangers as an integral part of the demineralization unit. This increases the capacity of the anion exchangers and prolongs their durability. By removing the CO_2 from the water, the ion exchange process is improved. However, due to a lack of manpower and the high budget required for degasser simulation, the project's focus shifted to CO2 gas adsorption using various types of water sources, tweaking their flowrate, and measuring the PH, conductivity, and TDS. The outcome of the experiment show promising results regarding how different types of water adsorb CO_2 (Figures 1, 2 and 3), although further experimentation is needed, these results showcase a big step in the right direction